學(xué)寶教育旗下公務(wù)員考試網(wǎng)站
當(dāng)前位置:主頁  >> 行測資料  >> 其它   
其它
公務(wù)員《行測》數(shù)學(xué)運算16種題型之余數(shù)問題
http://m.7ozkvabd.cn       2011-12-20      來源:山東公務(wù)員網(wǎng)
【字體: 】              

  關(guān)于“中國剩余定理”類型題目的另外解法


  “中國剩余定理”解的題目其實就是“余數(shù)問題”,這種題目,也可以用倍數(shù)和余數(shù)的方法解決。

  【例一】一個數(shù)被5除余2,被6除少2,被7除少3,這個數(shù)最小是多少?

  解法:題目可以看成,被5除余2,被6除余4,被7除余4 ??吹侥莻€“被6除余4,被7除余4”了么,有同余數(shù)的話,只要求出6和7的最小公倍數(shù),再加上4,就是滿足后面條件的數(shù)了,6X7+4=46。下面一步試下46能不能滿足第一個條件“一個數(shù)被5除余2”。不行的話,只要再46加上6和7的最小公倍數(shù)42,一直加到能滿足“一個數(shù)被5除余2”。這步的原因是,42是6和7的最小公倍數(shù),再怎么加都會滿足

  “被6除余4,被7除余4”的條件。

  46+42=88

  46+42+42=130

  46+42+42+42=172

  【例二】一個班學(xué)生分組做游戲,如果每組三人就多兩人,每組五人就多三人,每組七人就多四人,問這個班有多少學(xué)生?

  解法:題目可以看成,除3余2,除5余3,除7余4。沒有同余的情況,用的方法是“逐步約束法”,就是從“除7余4的數(shù)”中找出符合“除5余3的數(shù)”,就是再7上一直加4,直到所得的數(shù)除5余3。得出數(shù)為18,下面只要在18上一直加7和5得最小公倍數(shù)35,直到滿足“除3余2”

  4+7=11

  11+7=18

  18+35=53

  【例1】在國慶50周年儀仗隊的訓(xùn)練營地,某連隊一百多個戰(zhàn)士在練習(xí)不同隊形的轉(zhuǎn)換。如果他們排成五列人數(shù)相等的橫隊,只剩下連長在隊伍前面喊口令。如果他們排成七列這樣的橫隊,只有連長仍然可以在前面領(lǐng)隊,如果他們排成八列,就可以有兩個作為領(lǐng)隊了。在全營排練時,營長要求他們排成三列橫隊。

  以一哪項是最可以出現(xiàn)的情況?

  A該連隊官兵正好排成三列橫隊。

  B除了連長外,正好排成三列橫隊。

  C排成了整齊的三列橫隊,加有兩人作為全營的領(lǐng)隊。

  D排成了整齊的三列橫隊,其中有一人是其他連隊的

  【解析】這個數(shù)符合除以5余1,除以7余1,除以8余2;

  符合除以5余1,除以7余1的最小數(shù)為36,那么易知符合除以5余1,除以7余1,除以8余2為106,106÷3=35余1,所以選B。

  【習(xí)題一】1到500這500個數(shù)字, 最多可取出多少個數(shù)字, 保證其取出的任意三個數(shù)字之和不是7的倍數(shù)。

  【解析】

  每7個數(shù)字1組,余數(shù)都是1,2,3,4,5,6,0,要使得三個數(shù)字之和不是7的倍數(shù),那么其余數(shù)之和就不是7的倍數(shù)。

  我們應(yīng)該挑選 0,1,2,或者0,5,6

  因為7/3=2 也就是說最大的數(shù)字不能超過2 ,例如 如果是1,2,3 那么 我們可以取3,3,1 這樣的余數(shù),其和就是7

  500/7=71 余數(shù)是3, 且剩下的3個數(shù)字余數(shù)是1,2,3

  要得去得最多,那么我們?nèi)?,1,2比較合適 因為最后剩下的是1,2,3 所以這樣就多取了2個

  但是還需注意 0 不能取超過2個 如果超過2個 是3個以上的話 3個0就可以構(gòu)成7的倍數(shù) 0也能被7整除

  所以答案是71個1,2 和剩下的一組1,2 外加2個0

  71×2+2+2=146

 

  2012年山東公務(wù)員考試復(fù)習(xí)用書可參考《2012年山東公務(wù)員考試一本通》。



互動消息